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In the post-Human Genome Project era, the debate on the concept of
race/ethnicity and its implications for biomedical research are dependent
on two critical issues: whether and how to classify individuals and
whether biological factors play a role in health disparities. The advent of
reliable estimates of genetic (or biogeographic) ancestry has provided this
debate with a quantitative and more objective tool. The estimation of
genetic ancestry allows investigators to control for population stratification
in association studies and helps to detect biological causation behind
population-specific differences in disease and drug response. New
techniques such as admixture mapping can specifically detect
population-specific risk alleles for a disease in admixed populations.
However, researchers have to be mindful of the correlation between
genetic ancestry and socioeconomic and environmental factors that could
underlie these differences. More importantly, researchers must avoid the
stigmatization of individuals based on perceived or real genetic risks. The
latter point will become increasingly sensitive as several ‘for profit
companies’ are offering ancestry and genetic testing directly to consumers
and the consequences of the spread of the services of these companies are
still unforeseeable.
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In the past 20 years, we have witnessed a genetic
revolution. It began with the effort to sequence
the entire genome, included stem cell cloning and
now sequencing of the entire genomes of at least
1000 individual people (1, 2). Along the way, we
have discovered how genetically similar we are to
each other and to other mammalian species. At
the same time, we discovered that major continen-
tal groups differ by as much as 4–9% of the total
genetic variance (3, 4). Coincidentally, these major
continental groups corresponded to what some
have traditionally classified as ‘racial’ categories.
Consequently, we have witnessed a re-emergence
of an age-old debate on the concept of race
and its implications for biomedical research and
health outcomes. Human history is fraught with
examples of our obsession with classifying peo-
ple into racial categories. We have even obsessed
over the potential biologic implications associated

with these categories. Often times, biologic dif-
ferences were exploited and used to classify one
group as superior to another. However, at no pre-
vious time in history has the point become more
salient as we now enter the era of personalized
medicine with widely publicized examples such as
BiDil® for African-Americans with heart failure
and black box warnings against Carbamazepine for
Asians (5, 6). These examples highlight a debate
on the importance of race/ethnicity in biomedical
research and clinical practice.

Recent scientific advances have given this debate
new meaning. Through genetic testing, investiga-
tors can now measure genetic or biogeographic
ancestry. In short, we can use genetic testing to
determine and quantify an individual’s ancestral
background with statistical precision. The science
behind this body of work serves as the basis for
forensic investigation and television drama. Only
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recently have the applications of ancestry testing
entered into biomedical research and clinical prac-
tice (7–9). In addition, as the costs associated with
genetic testing have decreased, ancestry testing
has taken on a new twist as ‘direct to consumer’
marketing has popularized this topic, which is
now often referred to as ‘recreational genetics’.
Despite the social and fiscal implications asso-
ciated with ancestry testing, a new question has
emerged. For clinical outcomes, which is more
precise, self-identified or genetically determined
ancestry? Herein, we will discuss this new tech-
nology and its potential clinical and social impli-
cations and pitfalls.

Human population structure

There is broad consensus that modern humans
evolved from pre-existing populations in Eastern
Africa, where the oldest fossils with modern phys-
ical characteristics have been found and dated
to approximately 160,000–200,000 years ago (10,
11). Contemporary investigations of human genetic
variation support not only a common African ori-
gin for modern humans but also a subsequent col-
onization of Eurasia, Oceania and the Americas
around 60,000–100,000 years before present (3,
12). Recent reports using genome-wide polymor-
phisms confirmed that: (i) genetic variation seen
outside of Africa is generally a subset of the
total genetic variation that exists within Africa,
(ii) genetic diversity decreases with increased geo-
graphic distance from Africa, and (iii) linkage dis-
equilibrium (LD) patterns increase proportionally
to the distance from Africa (3, 13, 14). Although
all groups originated from sub-Saharan Africa, the
subsequent migrations out of Africa resulted in a
series of founder effects with the start of each new
population.

The degree of genetic differentiation between
human populations is relatively modest. Of the
total genetic variation among humans in single
nucleotide polymorphisms (SNPs), less than 2%
(1.78%) is found only in one continent; 89–94%
of genetic variance at the autosomal level (85%
for the X-chromosome) is within populations and
4–9% is found between continental groups (3, 4,
13). Although there is a possibility that these esti-
mates are skewed because of biases associated
with the selection of polymorphisms included in
genotyping platforms, analyses from non-biased
SNPs identified using resequencing by hybridiza-
tion reveal similar estimates (15).

Although the genetic differences between human
populations are relatively small, the subtle differ-
ences between populations are nonrandom and can

Fig. 1. Neighbor-joining tree of world population relation-
ships ascertained from > 500,000 genome-wide SNPs. Based
on the data presented by Jakobsson et al. (13) and avail-
able from http://neurogenetics.nia.nih.gov/paperdata/public/
and http://www.cephb.fr/hgdp-cephdb/.

accumulate over a large number of loci. Widely
accepted statistical methods can then use the infor-
mation generated from the aggregation of these
genetic differences to classify populations into
broad continental groups (Fig. 1). Furthermore,
these statistical methods can also be applied to
assign the biogeographical origin of individuals
within major groups (16).

Classification of humans:
race/ethnicity/ancestry

Genetic differences between human populations
have reified an old and widespread debate on the
concept of ‘race’ and its validity as a taxonomic
classification. Although many investigators have
argued that this construct offers an opportunity to
study the interaction between genetic, environmen-
tal, and social contributions to disease occurrence
and drug response (17–19), several investigators
disagree and see racial identity primarily as a social
construct that can misdirect the categorization of
participants in research projects (20–23). To com-
plicate the debate further, it is not uncommon for
the same individual to report their racial identity
differently in different contexts and at different
points in their lives (24, 25). Thus, many scholars
view ‘racial identity’ as a dynamic and complex
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construct, which represents an amalgam of biolog-
ical and social factors. Consequently, some have
promoted the term ‘ethnicity’ to characterize peo-
ple simply to avoid the controversy and strong
emotions associated with racial categorization.
Ethnicity gives special emphasis to the cultural,
socioeconomic, religious, and political dimensions
of human populations rather than their genetic
background, even though both terms, race and eth-
nicity, are related (26). However, the term ‘ethnic-
ity’ also suffers from some flaws such as assuming
a higher uniformity into a group ascribed with an
ethnic identity (i.e., combining Cubans, Mexicans,
Brazilians, Peruvians, and Argentineans, among
others, in the ethnic Hispanic/Latino group) and
the possibility that ethnicity can also change in
different times or circumstances (27).

A separate question about the classification of
humans into subpopulations is whether a model of
discrete subgroups vs a model of continuous varia-
tion over geographic distance is most appropriate.
Serre and Paabo argued that human genetic diver-
sity is best represented in clines and not discrete
groups (28). Using the data originally published
by Rosenberg et al. (4), they suggested that in
many cases discontinuities may arise from insuffi-
cient sampling of the geographical area. However,
Rosenberg et al. expanded their data analysis and
concluded that a model that includes discrete clus-
tering is appropriate and unlikely to be an artifact
of sampling (29). Instead, it appeared to be cor-
related with geographic boundaries across conti-
nents.

In the United States, the Office of Management
and Budget (OMB) Directive 15 sets the standard
classifications of racial and ethnic data for federal
statistics and administrative reporting. Since 2001,
federally funded researchers have been required to
categorize study participants into the OMB cate-
gories. Researchers rely on the study participants’
self-description of their race and ethnicity and, in
many cases, there is the risk that researchers could
assume that self-identified race/ethnicity is a rea-
sonable proxy for genetic homogeneity and use
these same variables in the subsequent analysis and
theoretical framing of the research (30).

Genetically determined ancestry

As an alternative to the use of self-identified
‘racial’ and ‘ethnic’ categorization, it has been pro-
posed that genetically determined ancestry may be
more accurate when considering biomedical and/or
clinical research (27). However, we must be clear
about our definition of ancestry as it can be defined

on several levels: biogeographical (i.e., African
vs Asian), geographical (i.e., southeast Asian vs
northern European), geopolitical (i.e., Cambodian
vs Swedish), or cultural terms (i.e., Jewish vs
Berber). Furthermore, the description of ancestry
can be self-identified, identified by an observer, or
estimated from genetic data. In addition, ancestry
can be defined by one or multiple sources.

Some reports have suggested that self-identified
race/ethnicity correlates with clustering of genetic
ancestral groups (31). However, self-identified
estimates of genetic ancestry are less accurate than
genetic testing and likely vary by population (27,
32, 33). Genetic estimates of ancestry become
especially relevant for populations that have under-
gone recent admixture, where distortions in the
relationship between genetic and self-assessed
ancestry have been described. As an example, a
recent study performed in the Southwest United
States reported that 85% of Hispanics underes-
timate their Native American admixture propor-
tions, whereas most Native Americans systemati-
cally underestimate their European ancestry (34).

Genetic ancestry (admixture) of a given indi-
vidual or population can be estimated by using
most genetic polymorphisms. However, ancestry
informative markers (AIMs) are routinely used
because the number of markers required to esti-
mate ancestry is inversely proportional to the infor-
mativeness of the marker. AIMs are those genetic
markers, usually SNPs, which exhibit high allele
frequency differences between parental popula-
tions, i.e., African vs European. Using highly
informative AIMs means that fewer markers are
required to obtain robust ancestry estimations,
which also means lower genotyping costs. One
measure of ancestral informativeness of a specific
polymorphism is delta (δ), the absolute difference
in allele frequency between two ancestral popu-
lations. A δ value of 1 implies complete ances-
try informativeness and a δ value of 0 implies
no informativeness for ancestry. Most markers are
only informative for one pair of ancestral popula-
tions, whereas some are informative for more than
one pair and, in general, a delta value of > 0.5 is
considered as highly informative for ancestry (35).
Even though δ is the most obvious measure for
ancestral informativeness, other measures such as
FST, I (n), and Fisher’s information content have
been used (36–38). In general, FST and I (n) are
slightly more accurate methods of ranking markers
than δ (37).

Several statistical methods have been proposed
to estimate individual admixture proportions using
different maximum likelihood, Bayesian, and prin-
cipal component (PC) approaches. According to
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some studies, the method selected has a relatively
small impact on the accuracy of individual admix-
ture estimates (39, 40). By far, the most important
factor in determining accuracy of the admixture
estimate appears to be the number of markers
used to estimate admixture and their informative-
ness. Even though they have been used in popu-
lation genetics for decades, PC-based estimations
are more widely applied recently to many large-
scale dense genotype datasets, especially ones in
which the variation in ancestry may be difficult to
ascertain through other methods (41–43).

In the United States, a significant proportion of
the population consists of admixed populations.
Therefore, categorical classifications are likely to
misrepresent the rich genetic variation that exists
within these populations. For example, in the
2000 U.S. Census, 48% of Hispanics self-identified
as White, 2% as African/African-American, 1%
as American Indian, and 42% as ‘Some Other
Race’ (44). As illustrated in Fig. 2(a), we can see
an example of genetic ancestry estimated in Puerto
Ricans, who are considered to be a Latino eth-
nic group. In this case, individuals self-identified
themselves and their four grandparents as being
‘pure’ Puerto Ricans. In contrast with the homo-
geneity in self-identification, there is a remarkable
genetic heterogeneity between individuals in the
contributions of the different ancestral groups.

Given the continuum of African ancestry in
African-Americans (Fig. 2(b)), it is surprising that
remnants of the ‘One-Drop Rule’ still persist in
the eyes of most Americans. The ‘One-Drop Rule’
defines a person as African-American with as
little as a single drop of ‘African blood’, regard-
less of the origin of his or her other ances-
tors (45). This rule was historically implemented
as a way to enlarge the slave population with
the children of slave holders and it was main-
tained in the Jim Crow era to keep the status quo
of social groups. From a social perspective, this
‘One-Drop Rule’ has encouraged racism but has
also brought together the African-American com-
munity. Recently, Barack Obama was elected as
president of the United States, a historic event.
Although half of his ancestry is of European
descent, media and general public opinion have
‘unambiguously’ classified him as the first African-
American president. From a genetic point of view,
there is no scientific justification to classify such
a diverse population as a single and homogenous
group. From a social point of view, there is likely
a ‘threshold’ of ancestry in which all members
of the population are classified within the cate-
gory (i.e., President Obama). This social classifi-
cation is likely to be contextual and specific to
population and time/era. Measurement of genetic
ancestry is the only method available so far to
estimate the degree of African ancestry among

Fig. 2. Individual ancestry estimates for (a) 90 healthy Puerto Ricans and (b) 100 healthy African-Americans, clustered by
admixture levels. Each individual is shown as a thin vertical line partitioned into different colored components representing
inferred membership in the ancestral groups. Results are fully discussed by Choudhry et al. and Tsai et al. (61, 87).
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African-Americans, as family genealogy and ques-
tionnaire data are not reliable predictors (33). We
also must be mindful of the fact that genetically
determined ancestry does not capture the social and
cultural determinants that contribute to an individ-
uals’ affiliation with a particular racial or ethnic
group.

Ancestry and population differences in disease

It is well known that specific monogenic diseases
(sickle cell anemia, Tay-Sachs, cystic fibrosis,
etc.) differ between populations. It is also well
known that many common and complex diseases,
such as asthma, show significant disparities in
prevalence, mortality and drug response among
different populations. In the United States, asthma
prevalence, morbidity and mortality are the highest
in Puerto Ricans, African-Americans, Filipinos and
Native Hawaiians, whereas it is the lowest in
Mexicans and Koreans (46). Similar differences
can also be observed for breast cancer incidence
and severity, heart disease, or diabetes (47–49).

Categorical classifications missed the complex-
ity behind these differences. For example, in the
United States, Puerto Ricans and Mexicans have
the highest and the lowest asthma prevalence,
morbidity and mortality, respectively. This is para-
doxical because both groups are classified as ‘His-
panic or Latino’. Differences in the contribution
of the ancestral populations to the contempo-
rary populations may in part underlie the ethnic-
specific differences observed in the epidemiology
of asthma. For example, increasing proportions
of Native American ancestry have been associ-
ated with milder asthma among Mexican Amer-
icans (8). In a similar way, associations between
several other diseases and genetic ancestry have
been described. Among U.S. Latinas with breast
cancer, higher European ancestry was significantly
associated with increased breast cancer risk after
adjustment for known risk factors and place of
birth (50). In a very recent study among Puerto
Ricans, African ancestry was negatively associated
with type 2 diabetes and cardiovascular disease and
positively correlated with hypertension (51).

However, such studies need to be mindful of the
historical association between socioeconomic sta-
tus and ancestry and the influence that this may
still have on disease associations today. Neglect-
ing to collect information on and to control for
socioeconomic factors in studies of admixture
may lead to associations between ancestry and
disease phenotypes that are confounded by non-
genetic factors (23). Even after adjustment for all

known confounders, it is important to interpret
associations between ancestry and health-related
outcomes with caution, because unmeasured envi-
ronmental confounders may still explain the effect.
Studies based on phenotype have shown that
Puerto Ricans who self-identify as black have
lower mean household income and were more
likely to live below the poverty level when com-
pared with those who self-identified as white (52).
Moreover, racial reporting was a significant pre-
dictor of hourly wages for Puerto Rican men in
New York City, even after controlling for lan-
guage, disability, work experience, inner-city res-
idence, presence of children, and industrial and
occupational location (53). Similarly, among Mex-
ican Americans those with dark skin/American
Indian physical appearance are more likely to be
discriminated against, receive less education and
hold occupations with lower prestige than their
light skin/European-appearance counterparts (54).
This relationship also was observed with respect
to earnings (55). Finally, it has been demonstrated
that genetic ancestry interacts with socioeconomic
status to confer differential risks for asthma among
Puerto Ricans (56). Social factors such as dis-
crimination, which may result in increased allo-
static load, have been shown to be associated
with worse physical and mental outcomes (57).
Therefore, any association between disease phe-
notypes and ancestry may not be causal but rather
a proxy for increased discrimination. Ultimately,
if a difference in disease or health-related out-
come is suspected to be at least partially because
of genetic causes, it is important to consider inter-
actions between genetic, social, and environmental
factors.

Genetic ancestry to identify genetic risk factors
for disease

Case-control genetic association studies suffer
from the potential problem of genetic confounding.
Adjusting for population genetic structure in asso-
ciation testing is particularly important, because
differences in population genetic structure between
cases and controls can confound SNP-disease asso-
ciations, leading to false-positive or false-negative
findings (58–60). Population stratification is the
result of admixture but refers to a phenomenon
in which genetic confounding occurs as a result
of this process, although some authors have used
the term with slightly different meanings. Some
reports have empirically assessed the effects of
stratification in case-control studies in admixed
populations (61, 62). However, while this issue
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might seem of remarkable importance only in
recently admixed populations, population strati-
fication has been identified in supposedly more
homogenous populations such as Europeans, Euro-
pean Americans or even in Icelandics (43, 63–65).

Another method that implements the informa-
tion provided by the estimates of genetic ances-
try is admixture mapping. Admixture mapping
is a genetic method to perform genome-wide
association analysis to identify regions harboring
population-specific risk alleles for a disease in
admixed populations. The phenotypes that are of
interest for admixture mapping are those which
demonstrate differences among continental groups
and which may not be explained by environmental
factors, access to care, and other nongenetic factor
differences between populations. Admixture map-
ping capitalizes on the fact that recently admixed
populations are known to have large regions of
LD (or genetic blocks) across genetic markers that
are informative for ancestry (66, 67). Admixture
mapping uses this increased LD to identify loci
associated with complex disease phenotypes. The
underlying premise behind admixture mapping is
that if a marker increases the risk of disease and
is found at a much higher frequency in one popu-
lation (the high risk population), then that marker
will also be found more frequently among cases.
Furthermore, that marker will be in LD with other
AIMs, which are specific to the high risk popula-
tion and that this LD will be spread across large
regions of the genome. By genotyping thousands
of AIMs across the genome, one may be able to
identify genomic regions in which the cases share
ancestry from the high risk population more com-
monly than expected. Such loci presumably harbor
disease-causing variants.

The ideal period of admixture for admixture
mapping is approximately 5–20 generations (68).
More remote admixture would mean that LD
would have decayed and therefore would require
many more markers. Conversely, more recent
admixture (one to three generations ago) would
mean that LD would extend too far to accurately
localize a genomic region. Another limitation is
the availability of genome-wide panels of markers
specific of the population to be analyzed.

Admixture mapping is especially relevant in
Latino and African-American populations because
their admixture is relatively recent and this results
in long-range LD (69, 70). A recent admixture
mapping approach has estimated ancestry across
the entire genome among African-American sub-
jects with hypertension and healthy controls. These
investigators identified two novel loci associated
with hypertension on chromosomes 6 and 20,

which partially explained the excess African ances-
try in subjects with hypertension compared with
healthy controls (71). In another recent high-
powered admixture scan, using 605 African-
American cases and 1043 controls, revealed a
locus on chromosome 1 that is significantly asso-
ciated with multiple sclerosis (72). More recently,
another study performed an admixture mapping
study to characterize the genetic factors associated
with the lower white blood cell count that African-
Americans characteristically show (Fig. 3). In the
figure, we could observe a significant increase
in the African ancestry proportions in a region
of chromosome 1 in two independent African-
American cohorts (the Health ABC and the Jack-
son Heart Studies). The SNP with the strongest
association was in the Duffy blood group anti-
gen gene and it is known to eliminate expression
of the Duffy blood group antigen (7). Admixture
mapping has also identified a gene responsible for
end stage renal disease in African-Americans (9,
73). In addition, admixture mapping helped to
identify novel genetic variants for prostate can-
cer risk in African-Americans in a locus that had
already been associated with prostate cancer in
Caucasians (74). These promising results indicate
a strong possibility for success in well-designed
admixture mapping studies to identify genetic risk
factors for complex traits.

Fig. 3. Admixture mapping results (LOD Scores) of a
case-control analysis of white blood cell count in African-
Americans. Ancestry results calculated using ANCES-
TRYMAP (88) for initial genome-wide scan are plot for the
Health ABC Study (diamonds) and the Jackson Heart Study
(circles) cohorts. Broken red line shows significance thresh-
old. Results were presented by Nalls et al. (7).
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Clinical applications of genetic ancestry

Despite the promising role that genetic ances-
try plays in biomedical research, the debate still
remains open about whether the profiling of
individuals based on their population of origin
has to be included in biomedical research or
not. For example, should prescriptions take into
account the ‘racial’ profile of patients? After all,
BiDil® was the first Food and Drug Administra-
tion approved race-specific drug to be solely mar-
keted to self-identified African-American patients
with heart failure (5, 75). However, acting on rapid
‘racial’ assessments can lead to inappropriate treat-
ments (30).

We speculate that, with the advent of high-
throughput genotyping, we will bypass the need for
self-identified categorical definitions of individuals
recruited for genetic and pharmacogenetic testing.
However, we believe that there are several mile-
stones that we must achieve before we arrive at this
point. First, genetic and pharmacogenetic studies
will need better representation of diverse popu-
lations. Despite government initiatives to include
different populations, most research is still done
on populations of European origin. For example,
all the recombinant factor VIII products available
to treat hemophilia A correspond to the amino
acid sequences present in Europeans, but ignore
the ones in other populations and are responsible
of a great proportion of alloantibody production
among African-American patients (76). Second,
future studies will be required to determine
whether ancestry modifies genetic and pharmaco-
genetic effects. To date, we are only aware of
one investigation that has demonstrated that ances-
try modifies pharmacogenetic associations (77).
Third, we are in the discovery phase of identifying
novel genetic risk factors for disease and this has
raised expectations for predicting risk (78). How-
ever, the statistics used for this discovery phase
(odds ratios and p-values) are not appropriate for
evaluating the predictive value of the genetic pro-
files of individual patients. Rather, we will need
statistics that are more commonly used in clini-
cal practice such as sensitivity, specificity, positive
and negative predictive value (79, 80). Fourth, to
make genetic and pharmacogenetic testing, a prac-
tical reality for everyone, the costs of genetic test-
ing will need to be reduced. Otherwise, from a
public health perspective, it can be easily argued
that resources would be better spent on prevention
at the population level rather than at the individual
level. Finally, we will need to have in place appro-
priate ethical, legal and social guidelines to avoid
stigmatization of specific members of a given

population. For example, studying health dispar-
ities and identifying genetic variation responsible
for disease using population groups can lead to
the ‘racialization’ of disease, irrevocably linking
a disease state to a particular group (81). This
would ultimately lead to the stigmatization of the
members of that group and decreased informa-
tion, surveillance, and access to treatment to other
groups (81, 82). This all can lead to the overem-
phasis of the magnitude of genetic differences
between populations and the overemphasis of the
role of genetics as the basis for health disparities.

Personal applications of genetic ancestry

Several for profit companies are now providing
ancestry testing directly to consumers. To the gen-
eral lay public, these companies may prima facie
be offering the same service. However, depend-
ing on the genetic testing performed, they may
be offering completely different services. Some
companies will only analyze mitochondrial DNA
(mtDNA) or Y-chromosomal DNA, which repre-
sent the maternal lineage or the paternal lineage,
respectively, while others will analyze autosomal
DNA that provides an average estimate of the
ancestry of all the lineages (83). Each method pro-
vides unique data and each has its own limitations.
For example, the use of only mitochondrial or
Y-chromosomal markers will only provide infor-
mation about one lineage when in reality there are
thousands of lineages that contribute to contem-
porary populations (84). Over the last 10 genera-
tions (dating back 200–250 years in the past), any
individual has a total of 1024 different ancestors.
Uniparental tests (Y or mitochondrial) provide a
customer with a description of a geographical (or
even ethnic or tribal) group that can be different
depending on the samples in a company’s refer-
ence database. For autosomal markers, the other
source of variation in the results, besides the infor-
mation in the company’s database, is the number
of markers tested which positively correlates with
the statistical accuracy of ancestry estimates. In
the best case scenario, genetic markers can only
quantify the different continental contributions to
a given individual’s genome. These limitations are
often unknown to the lay public and can give
highly skewed or misleading results. For instance,
these tests are not able to trace the ancestry of an
individual to a single village in northern Europe
or to prove kinship with Genghis Khan or the
High Kings of Ireland just from the mitochondrial
haplogroup. The sociological implications of such
ancestry testing are complex and far beyond the
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scope of this article. On the one hand, they may
overstate, and even misinform, the precision of the
estimates. On the other hand, they may provide
some information to individuals whose ancestors
are members of a diaspora and seek to learn more
about their ancestors.

In addition to ancestry testing, many for profit
companies are providing customers with genetic
testing of potentially clinically important genetic
risk factors and there are even ‘risk tests’ for spe-
cific diseases such as breast cancer. Although there
is increasing popularity for commercial genomic
profiles, recent evaluations found the scientific evi-
dence to be insufficient to support their usefulness
to measure genetic risk for diseases or for disease
prevention (85, 86). These tests are also lacking
the inclusion of environmental and dietary infor-
mation to provide a good estimate of the real risk
for complex diseases of their costumers and there
are also concerns about the stability of the cur-
rent risk estimates (78, 79). Furthermore, many of
these risk factors are described on a population
level and have been most often examined in popu-
lations of European decent and less so in African-
Americans or Asians. However, to our knowledge,
no one has determined whether or not the strength
of the risk associated with a given genotype varies
with the percentage of individual ancestry of a
given population. For example, among African-
Americans, does percentage of African ancestry
of a given individual modify the genotypic relative
risk associated with the apolipoprotein E (APOE)
ε4 allele for Alzheimer’s disease? We believe that
this sort of question will become more common
with increased globalization and inter-racial mix-
ing of populations. This area of inquiry may be a
new frontier for assessing genotypic relative risk
profiles.

Conclusions

The use of genetic ancestry estimations is a topic
of growing importance in biomedical research. The
awareness that population stratification is a poten-
tial confounding factor has been increasing among
researchers. Currently, the inclusion of ancestry
estimates has become essential when performing
genetic association studies. In the era of high-
throughput genotyping, genetic ancestry also has
the potential to leave us with the dilemma of
how best, if at all, to categorize individuals in
biomedical research and clinical practice. Its more
objective nature has made genetic ancestry a less
polemic tool to approach the biological hetero-
geneity between populations. Consequently, there

is now a convergence emerging in the opinion
of interdisciplinary groups and workshops about
how to relate genetic variation to population-level
differences in complex traits (27, 81). Epidemio-
logic research must broaden its reach to include
all aspects of genetic, environmental and socio-
logic risk factors. Beyond genetics, research must
include traditional environmental risk factors asso-
ciated with disease (i.e., diet, age, gender, environ-
mental exposures, family history) and the social
dimension of individuals also has to be prop-
erly taken into account. As presented, factors such
as socioeconomic status, educational level, racism
and discrimination, access to healthcare, religion,
language of use, immigration history, etc. have to
be integrated in research. This paradigm shift in
research will require the engagement of a broad
range of specialists from different disciplines not
only in the study design but also in the interpreta-
tion and discussion of results.

With the availability of genetic ancestry esti-
mates, admixed populations represent a valu-
able opportunity to study complex diseases and
drug response. Admixed groups, such as Latinos,
African-Americans, or Cape Coloreds from South
Africa, share varying proportions of different
ancestral populations and their genetic complex-
ity can potentially complicate biomedical research
studies. On the other hand, precisely because of
this complexity, admixed populations can also
provide a unique opportunity to disentangle the
clinical, social, environmental, and genetic under-
pinnings of population differences in health out-
comes. Specifically, their mixed ancestry provides
the intrinsic variability needed to untangle com-
plex gene–environment interactions that may help
to explain the population differences in the epi-
demiology of complex diseases. A good example
could be the striking disparities in asthma that are
seen among different Latino groups and other pop-
ulations.

The opportunities that genetic ancestry is offer-
ing to biomedical and clinical research are also
opening new challenges to protect individuals from
unethical uses of these technologies. The first indi-
cations for drugs based on population background
are seen by some as the advent of the golden
age of personalized medicine. In contrast, others
will view this as opening Pandora’s box to new
forms of racism, discrimination, and population
stigmatization based on pseudoscientific evidence.
At the same time, the accessibility to inexpensive
genotyping tools has allowed the emergence of a
whole array of ‘for profit companies’ offering per-
sonalized genetic services to customers (79). The
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products offered by these companies have limi-
tations that are not well understood by most con-
sumers. Again, a multidisciplinary approach has to
be taken to set in place appropriate ethical, legal
and social guidelines. Market forces can exert pres-
sure to get additional customers, but strong science
and reliable information are essential, especially
when it is the consumers’ health that is at stake.

The routine application of genetic ancestry esti-
mation is a milestone to the future that we envi-
sion for biomedical research: the sequencing of
the whole genome of individuals, adding social
and environmental factors and being able to make
predictions on overall (genetic and environmen-
tal) risk for common diseases, personalized diets,
lifestyle recommendations, and drug treatments. It
is important to note, however, that as we resolve
some debates, new questions will emerge. In our
view, the most interesting question to emerge from
the development of ancestry testing is which is bet-
ter for clinical outcomes, self-identified vs genetic
ancestry?
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